Certain information, particularly information relating to future performance and other business matters, including expectations regarding clinical development, market opportunities and anticipated milestones constitute forward-looking statements within the meaning of the Private Securities Litigation Reform Act.

Forward-looking statements may generally contain words such as “believe,” “may,” “could,” “will,” “possible,” “can,” “estimate,” “continue,” “ongoing,” “consider,” “intend,” “indicate,” “plan,” “project,” “expect,” “should,” “would,” or “assume” or variations of such words or other words with similar meanings. Novavax cautions that these forward-looking statements are subject to numerous assumptions, risks and uncertainties that change over time and may cause actual results to differ materially from the results discussed in the forward-looking statements.

Uncertainties include but are not limited to clinical trial results, dependence on third party contractors, competition for clinical resources and patient enrollment and risks that we may lack the financial resources to fund ongoing operations.

Additional information on Risk Factors are contained in Novavax’ filings with the U.S. Securities and Exchange Commission, including our Annual Report on Form 10-K for the year ended December 31, 2020, our Quarterly Reports on Form 10-Q, and our Current Reports on Form 8-K, which are all available at http://www.sec.gov.

Forward-looking statements are based on current expectations and assumptions and currently available data and are neither predictions nor guarantees of future events or performance.

Current results may not be predictive of future results.

You should not place undue reliance on forward-looking statements which speak only as of the date hereof.

The Company does not undertake to update or revise any forward-looking statements after they are made, whether as a result of new information, future events, or otherwise, except as required by applicable law.

Matrix-M and NanoFlu are trademarks of Novavax, Inc.
Novavax at-a-Glance

10+ years of Nanoparticle Vaccine Development

$2+ billion in Funding Secured to Date

150 million Doses per Month Manufacturing Capacity by 4Q 2021*

50,000+ Participants Enrolled in COVID-19 Clinical Trials

~800 Employees Globally

96% Efficacy Demonstrated Against Original COVID-19 Strain

*When all planned capacity is online
Strong Momentum Continues

Confirmed high efficacy of NVX-CoV2373 against original COVID-19, as well as widely circulating variant strains

Advanced key areas of product development, including PREVENT-19 study, variant strain vaccine candidates and combination vaccines

Expanded manufacturing capacity and furthered partnerships globally, while securing additional purchase agreements for NVX-CoV2373

Progressed regulatory dialogue around the globe in order to prepare filings for authorization of NVX-CoV2373
NVX-CoV2373 Progress Built Upon Years of Vaccine Research
Recombinant Nanoparticle Technology Platform and Matrix-M™ Adjuvant Combined to Create Vaccines That Address Global Public Health Threats

Coronavirus uses Spike protein to attach and infect human cells

Recombinant Spike protein nanoparticles mimic virus, stimulate immunity but are not infectious

Matrix-M adjuvant helps stimulate a robust, protective immune response

Recombinant nanoparticle and Matrix-M adjuvant are premixed and stable at standard refrigeration temperatures

*Coronavirus image: CDC Library
NVX-CoV2373: A Full-length, Stabilized Prefusion SARS-CoV-2 Spike (S) Glycoprotein + Matrix-M™ Adjuvant

- Full-length, native conformation Spike protein trimer configured in a nanoparticle
- Formulated with Matrix-M adjuvant
- Highly immunogenic
- Spike protein is a validated target

Cryo-EM map of trimers showing the spike in prefusion state
Bangaru et al., 2020

Transmission Electron Microscopy of CoV2373 Trimers
Tian et al., 2020

Transmission Electron Microscopy of CoV2373 Nanoparticle
Novavax Technology Highlighted in Recent Peer-Reviewed Publications
NVX-CoV2373 Clinical Development Overview
NVX-CoV2373 Clinical Development Overview

<table>
<thead>
<tr>
<th>Phase 1/2</th>
<th>Phase 2b</th>
<th>Phase 3</th>
<th>Phase 3 (PREVENT-19)</th>
</tr>
</thead>
<tbody>
<tr>
<td>US & AUSTRALIA</td>
<td>SOUTH AFRICA</td>
<td>UNITED KINGDOM</td>
<td>US & MEXICO (PREVENT-19)</td>
</tr>
<tr>
<td>n = 131 18-59 years</td>
<td>n = 4,404 18-65 years (n=245 HIV+)</td>
<td>n = 15,203 18-84 years (n=400 co-admin with flu vaccine)</td>
<td>n ~ 30,000 ≥18 years</td>
</tr>
<tr>
<td>Enrollment Complete</td>
<td>Enrollment Complete</td>
<td>Enrollment Complete</td>
<td>Enrollment Complete</td>
</tr>
<tr>
<td>Data Published</td>
<td>6-Month Booster Complete Results Exp Q3 ’21</td>
<td>Final Data Published</td>
<td>Final Data Published</td>
</tr>
<tr>
<td>n = 1,288 ≥18 years (n=600 >60 years)</td>
<td>Final Data Published</td>
<td>Final Data Announced</td>
<td>Final Data Exp Q2 ’21</td>
</tr>
<tr>
<td>Enrollment Complete</td>
<td>Crossover Ongoing</td>
<td>Crossover Ongoing</td>
<td>Crossover Ongoing</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Pediatric Extension Ongoing n ~ 3,000 12-17 years</td>
</tr>
</tbody>
</table>
Robust Antibody Response Demonstrated at Day 35
2 doses + Matrix-M™ adjuvant*
Phase 1/2 US & Australia

Keech, C. et al. DOI: 10.1056/NEJMoa2026920

*Matrix-M™ references Matrix-M™ adjuvant

Convalescent Sera

Anti-Spike IgG (Log10 EU/mL)

100,000
10,000
1,000
100

Placebo
25µg
25µg + Matrix-M
Placebo
5µg + Matrix-M
25µg + Matrix-M
25µg + Matrix-M

References:

- Keech, C. et al. DOI: 10.1056/NEJMoa2026920
- Matrix-M™ references Matrix-M™ adjuvant
Robust Immune Response

2 doses + Matrix-M™ adjuvant

Phase 1/2 US & Australia

Antibody levels at 6 months are within the range of recently recovered patients

Convalescent Sera

Anti-Spike IgG (Log_{10} EU/mL)

Day 0 7 21 28 35 49 105 189

2 doses: 25µg + Matrix-M adjuvant

1 dose: 25µg + Matrix-M adjuvant

Placebo
6-Month Boost
Phase 2 US & Australia

• Select participants in the 5µg dose cohorts received booster doses
• Two treatment groups were boosted at 6 months:
 ▪ Group 1: received 5µg on day 0
 • Randomized received 5µg vs placebo at day 186
 ▪ Group 2: received 5µg on day 0 and day 21
 • Randomized received 5µg vs placebo at day 186
• Immunology results expected 3Q 2021
Key Takeaways from Phase 2b Study in South Africa
Conducted in a context of greater than 90% variant virus

Primary Efficacy Endpoint Achieved:
49% in Overall Trial Population

- **55%** efficacy in HIV-negative population (95% of study participants)
- **51%** efficacy against B.1.351 escape variant* (first described in South Africa)

* In 95% of the study population, which was HIV-negative
Key Takeaways from Phase 3 Study in the UK

- 96% efficacy against original COVID-19
- 86% efficacy against B.1.1.7 variant (first described in UK)
- 89% efficacy in participants ≥ 65 years of age
- 91% efficacy in participants with high-risk medical comorbidities
Events Were Infrequent and Balanced
Summary of events\(^1\) through Day 7 after Dose 1 & 2 (n=15,139)
Phase 3 UK

- Events occurring after receipt of deployed vaccines and reactogenicity events (according to preferred terms) are excluded.
- Missing information not imputed.
- According to post hoc analysis based on list of protocol derived preferred terms for PIMMC.
- According to post hoc analysis based on revised AESI related to COVID-19 definition.

Events were infrequent and balanced between vaccine and placebo groups.
Local Symptoms: Majority “None” or “Mild”

Phase 3 UK

<table>
<thead>
<tr>
<th>Dose</th>
<th>Mild</th>
<th>Moderate</th>
<th>Severe</th>
<th>Life Threatening</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dose 1</td>
<td>Any local symptom</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Tenderness</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Pain</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Erythema</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Swelling</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Dose 2	Any local symptom				
	Tenderness				
	Pain				
	Erythema				
	Swelling				

- **Placebo**
- **NVX-CoV2373**
Systemic Symptoms: Majority “None” or “Mild”

Phase 3 UK

<table>
<thead>
<tr>
<th>Dose 1</th>
<th>Mild</th>
<th>Moderate</th>
<th>Severe</th>
<th>Life Threatening</th>
</tr>
</thead>
<tbody>
<tr>
<td>Any systemic symptom</td>
<td>0%</td>
<td>0%</td>
<td>0%</td>
<td>0%</td>
</tr>
<tr>
<td>Headache</td>
<td>20%</td>
<td>20%</td>
<td>20%</td>
<td>20%</td>
</tr>
<tr>
<td>Muscle pain</td>
<td>40%</td>
<td>40%</td>
<td>40%</td>
<td>40%</td>
</tr>
<tr>
<td>Fatigue</td>
<td>60%</td>
<td>60%</td>
<td>60%</td>
<td>60%</td>
</tr>
<tr>
<td>Malaise</td>
<td>80%</td>
<td>80%</td>
<td>80%</td>
<td>80%</td>
</tr>
<tr>
<td>Nausea or vomiting</td>
<td>100%</td>
<td>100%</td>
<td>100%</td>
<td>100%</td>
</tr>
<tr>
<td>Elevated temperature</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Joint pain</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Dose 2

Any systemic symptom	0%	0%	0%	0%
Headache	20%	20%	20%	20%
Muscle pain	40%	40%	40%	40%
Fatigue	60%	60%	60%	60%
Malaise	80%	80%	80%	80%
Nausea or vomiting	100%	100%	100%	100%
Elevated temperature				
Joint pain				

Placebo

<table>
<thead>
<tr>
<th>NVX-CoV2373</th>
<th>0%</th>
<th>20%</th>
<th>40%</th>
<th>60%</th>
<th>80%</th>
<th>100%</th>
</tr>
</thead>
<tbody>
<tr>
<td>Elevatated temperature</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Joint pain</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Nausea or vomiting</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Headache</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Muscle pain</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Fatigue</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Malaise</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Life-Threatening

<table>
<thead>
<tr>
<th>0%</th>
<th>20%</th>
<th>40%</th>
<th>60%</th>
<th>80%</th>
<th>100%</th>
</tr>
</thead>
<tbody>
<tr>
<td>Elevatated temperature</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Joint pain</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Nausea or vomiting</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Headache</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Muscle pain</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Fatigue</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Malaise</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Key Takeaways from Phase 3 UK and Phase 2b South Africa Clinical Trials

Efficacy
- Achieved **statistical success** criteria in both trials
- **High efficacy** confirmed against multiple strains of COVID-19
- **100%** protection against severe disease

Safety
- **Favorable** safety profile

Ongoing Development
- **Crossover arms** initiated in both trials
PREVENT-19 Phase 3 Update

- Approximately 30,000 participants enrolled (13% Older Adults)
- Blinded crossover underway
- Pediatric extension underway

- 20% Latin American
- 12% African American
- 6% Native American
- 5% Asian American

- 1-5 sites
- 6-10 sites
- 11-15 sites
PREVENT-19 Phase 3 Trial Crossover Ongoing

Randomized, observer-blinded, placebo-controlled trial evaluating efficacy, immunogenicity and safety

- 30,000 Adults ≥18 years

R 2:1

5 µg + 50 µg Matrix-M™ adjuvant (2 injections: Day 0 and Day 21) n = ~20,000

Placebo 2 injections 21 days apart

Placebo (2 injections: Day 0 and Day 21) n = ~10,000

5 µg + 50 µg Matrix-M™ adjuvant 2 injections 21 days apart

- Primary endpoint: PCR-positive symptomatic mild, moderate or severe COVID-19 illness diagnosed ≥7 days after second dose
- Final data expected in 2Q 2021

Protocol version 8.0 posted on Novavax.com
PREVENT-19 Phase 3 Pediatric Extension

Randomized, observer-blinded, placebo-controlled trial evaluating safety, efficacy and effectiveness

- 5 µg + 50 µg Matrix-M™ adjuvant (2 injections: Day 0 and Day 21)
 n = ~2,000

- Placebo (2 injections: Day 0 and Day 21)
 n = ~1,000

- ~3,000 Adolescents 12-17 years

- First dose: April 26, 2021
- Blinded crossover expected to begin 6 months after initial set of vaccinations

Protocol version 8.0 posted on Novavax.com
Pathway to Regulatory Approvals

• Rolling reviews in various markets
• Ongoing discussions with FDA through submissions to open IND
• Anticipate filings for authorization in UK, US and Europe in 3Q 2021

*SK bioscience initiated regulatory submission process in collaboration with Novavax
Clinical Development Conducted by Partners

NVX-CoV2373

<table>
<thead>
<tr>
<th>Phase 1/2 Japan</th>
<th>Phase 2 Com-COV2</th>
<th>Phase 2/3 India</th>
</tr>
</thead>
<tbody>
<tr>
<td>n = 200</td>
<td>n = 1,050</td>
<td>n = 1,600</td>
</tr>
<tr>
<td>≥ 20 years</td>
<td>≥ 50 years</td>
<td>18-65 years</td>
</tr>
<tr>
<td>Enrollment Complete</td>
<td>Conducted by University of Oxford</td>
<td>Enrollment Complete in Phase 2 Cohort</td>
</tr>
<tr>
<td>Sponsored by Takeda</td>
<td>Sponsored by UK Vaccines Taskforce</td>
<td>Sponsored by Serum Institute</td>
</tr>
</tbody>
</table>

Malaria – R21 with Matrix-M™ Adjuvant

<table>
<thead>
<tr>
<th>Phase 2b Africa</th>
<th>Phase 3 Africa</th>
</tr>
</thead>
<tbody>
<tr>
<td>n = 450</td>
<td>n = 4,800</td>
</tr>
<tr>
<td>5-17 months</td>
<td>5-36 months</td>
</tr>
<tr>
<td>Data Published</td>
<td></td>
</tr>
</tbody>
</table>

- Data published in *Preprints with The Lancet*
- 77% efficacy with 50µg of Matrix-M™ adjuvant
- 71% efficacy with 25µg of Matrix-M™ adjuvant

Vaccine created and trial sponsored by University of Oxford in collaboration with Serum Institute, with Matrix-M™ adjuvant
Variant Strain Vaccine Clinical Development
Variant Vaccines Under Development Against Emerging COVID-19 Variants

Development underway for new constructs against emerging strains, using both variant and bivalent approaches

Evaluated B.1.351 variant strain vaccine candidate as one year booster in preclinical study

- Demonstrated strong functional antibody response within 7 days of receiving boost vaccine

Expect to initiate clinical evaluation of one or more candidates
Response in Baboons Immunized 1 Year Ago

Boost: 3µg B.1.351 rS + 50µg Matrix-M™ adjuvant

Prime/Boost
Original strain
Dose 1 Dose 2

Boost
Variant strain
Dose 1 Dose 2

7 days after dose

Geometric mean of 1, 5 or 25µg NVX-CoV2373 + 50µg Matrix-M™ adjuvant

Geometric mean of 25µg NVX-CoV2373 no Matrix-M™ adjuvant

Anti-rS IgG Titer EC50 (log10)

weeks after immunization

0 3 4 5 7 17 26 43 46 48 50
Ace2 Receptor Inhibition Increases After Boost at 1 Year

Boost: 3µg B.1.351 rS + 50µg Matrix-M™ adjuvant

US-WU1 (Original) Spike Inhibition

B.1.351 Spike Inhibition

Priming Regimen

Geometric mean of 1, 5 or 25µg NVX-CoV2373 + 50µg Matrix-M™ adjuvant

Geometric mean of 25µg NVX-CoV2373 no Matrix-M™ adjuvant
NVX-CoV2373
Manufacturing & Distribution
Practical Benefits Enabling Efficient Distribution

- **Presentation**
 - 10-dose vials

- **Transportation & Storage**
 - Stable at 2 to 8°C

- **Administration**
 - Ready to use

- **Large Global Capacity**
 - Well-characterized technology platform; Dose-sparing
Global Supply Chain Established
Annual capacity of approx. 150 million* doses per month starting in 4Q 2021

*When all planned capacity is online
Agreements Executed for NVX-CoV2373
Ensuring fair and equitable global access

Gavi / COVAX Facility*
- Finalized APA with Gavi
- NVAX to provide 350 million doses
- Serum Institute to provide balance of the 1.1 billion doses
- Ensuring fair and equitable access of NVX-CoV2373

~1.1 billion doses

Commitment to US Government
- Doses committed to US government in relation to funding received

110 million doses

Advance Purchase Agreements
- Government of UK
- Government of Canada*
- Commonwealth of Australia
- Government of New Zealand
- Government of Switzerland*

~200 million doses

Licensing Agreements
- SK bioscience granted exclusive license in Republic of Korea*
- Serum Institute granted exclusive license in India and non-exclusive license in LMICs
- Takeda granted exclusive license in Japan*

* Supply agreements entered into or amended since the beginning of 2021
NanoFlu™ and Combination Vaccine Programs
NanoFlu™ Addresses the Need for Greater and Broader Immune Responses

Recombinant nanoparticle technology and Matrix-M™ adjuvant

Next-generation flu vaccine for improved protection

- Provides broader protection against antigenic drift and mismatched strains
- Eliminates egg-adaptive strain changes that result in mismatch between vaccine and circulating viruses
- Enhances immune response to generate potent, robust, and long-lasting protective immune responses
Ongoing Development of Combination Vaccine Candidates

Advanced NanoFlu™ / NVX-CoV2373 combination vaccine candidate into preclinical studies

Vaccine candidate induced strong functional antibodies in animal models comparable to vaccination with standalone vaccines

Expect to initiate clinical evaluation later this year
NanoFlu™/NVX-CoV2373 Combination Vaccine: Robust Immune Responses, Protection Against COVID-19

- Hemagglutination inhibition (HAI) and ACE2 receptor-inhibiting titers were comparable between immunization with the combination vaccine and with component vaccines
- Maintained clinical and virologic protection against experimental challenge with SARS-CoV-2
 - No clinical or histological sign of enhanced disease
- Induced antibodies against SARS-CoV-2 neutralizing epitopes common between USA-WA1 (original strain) and B.1.351 variant
- A transformative innovation to fight both illnesses

Massare M.J. et al., May 2021. DOI: 10.1101/2021.05.05.442782
Summary
Leveraging Our Differentiated Platform to Build for the Future

Protection against variants

Highly adaptable platform

Strong stability profile

Favorable safety profile

Short-Term
- Emergency authorization of NVX-CoV2373 in multiple markets
- Expansive distribution of NVX-CoV2373

Near-Term
- Leveraging NVX-CoV2373 as a booster and for seasonal revaccination
- Production of variant strain vaccine(s)

Long-Term
- Licensure of NanoFlu™ / NVX-CoV2373 combination vaccine
- Continued development of robust pipeline
Key Upcoming Milestones

- Execute ongoing product development for NVX-CoV2373, including PREVENT-19, pediatric studies and ongoing booster/crossover studies.
- Finalize preparations across our global supply chain to ensure successful commercial roll-out of NVX-CoV2373.
- Gain authorization of NVX-CoV2373 from regulatory authorities worldwide.
- Advance variant strain vaccine and combination vaccine candidates into clinical studies to address the evolving COVID-19 pandemic.
Pipeline Overview
Near-Term Vaccine Pipeline

Significant opportunities for future development

<table>
<thead>
<tr>
<th>Therapeutic Area</th>
<th>Name</th>
<th>Preclinical</th>
<th>Phase 1</th>
<th>Phase 2</th>
<th>Phase 3</th>
<th>Marketed</th>
</tr>
</thead>
<tbody>
<tr>
<td>Coronavirus</td>
<td>NVX-CoV2373 (Booster)</td>
<td>Matteo-M</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Variant Strain (Monovalent and / or Bivalent)</td>
<td>Matteo-M</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Seasonal Influenza</td>
<td>NanoFlu (Older Adults) (Pre-BLA)</td>
<td>Matteo-M</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Combination Vaccines</td>
<td>NanoFlu / NVX-CoV2373</td>
<td>Matteo-M</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>NanoFlu / RSV</td>
<td>Matteo-M</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>NanoFlu / NVX-CoV2373 / RSV</td>
<td>Matteo-M</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Clinical Development Conducted by Partners</td>
<td>Malaria</td>
<td>Matteo-M</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Vaccine created and trial sponsored by University of Oxford in collaboration with Serum Institute, with Matrix-M™ adjuvant