Induction of broadly cross-reactive immune responses against A(H3N2) viruses: results of a phase 2 trial of a novel recombinant hemagglutinin saponin-adjuvanted nanoparticle influenza vaccine (“NanoFlu”)

Vivek Shinde, Rongman Cai, Joyce Plested, Bin Zhou, Haixia Zhou, Mingzhu Zhu, Nan Wang, Shane Cloney-Clark, Sapec Agrawal, Michelle Spindler, Nita Patel, Michael Massare, Gale Smith, Nigel Thomas, Iksung Cho, Lou Fries, Greg Glenn

OPTIONS X, Singapore, Sept. 1, 2019
The problem with current seasonal influenza vaccines
The NanoFlu vaccine and preclinical data
The Phase 2 trial
Next steps
The problem: Available seasonal influenza vaccines are increasingly ineffective

• The core problem: effectiveness of the A/H3N2 vaccine component, especially in older adults

WHY?

• Limited breadth of response:
 • Strain-specific vaccine responses and consequent vulnerability to drift
 • Increasing A/H3N2 strain diversity
 • Early life imprinting

• Limited “strength” of response:
 • Immunosenescence
 • Weakly immunogenic vaccines – suboptimal antibody or CMI responses
 • Limited durability – late season waning

• Impaired fidelity:
 • Egg-adaptive mutations produce antigenic changes in vaccine viruses
Gaps in current seasonal influenza vaccine technologies and what “better” could look like

- Licensed vaccines address some, but not all of these deficiencies

<table>
<thead>
<tr>
<th>Vaccine Type</th>
<th>Problem Addressed</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Antigenic drift</td>
<td>Immunosenescence</td>
</tr>
<tr>
<td></td>
<td>Antibodies</td>
<td>T-cells</td>
</tr>
<tr>
<td>Standard Inactivated</td>
<td>✗</td>
<td>✗</td>
</tr>
<tr>
<td>High-dose inactivated</td>
<td>✗</td>
<td>✓</td>
</tr>
<tr>
<td>Adjuvanted</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>Cell-grown inactivated</td>
<td>✗</td>
<td>✗</td>
</tr>
<tr>
<td>Recombinant</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>NanoFlu</td>
<td>✓</td>
<td>✓</td>
</tr>
</tbody>
</table>

- NanoFlu induces broadly cross-reactive antibodies and T-cell responses, and avoids egg-adaptive changes
The NanoFlu vaccine: The antigen

- Recombinant hemagglutinin (HA) nanoparticles
 - Produced in a Baculovirus/Sf9 insect cell system
 - Expressed as recombinant, full-length, wild-type, uncleaved HA0 that assembles into homotrimers
 - Purified homotrimers form higher order nanoparticle structures of 20-40 nm with PS-80
 - Manufactured in a rapid, high-yield, high purity, process
The NanoFlu vaccine: The adjuvant Matrix-M™

- **Recombinant hemagglutinin (HA) nanoparticle vaccine**
 - Produced in a Baculovirus/Sf9 insect cell system
 - Expressed as recombinant, full-length, wild-type, uncleaved HA0 that assemble into trypsin-resistant trimers
 - Purified into HA homotrimers to form higher order nanoparticle structures of 20-40 nm
 - Manufactured in a rapid, high-yield, high purity, process

- **Potent saponin-based Matrix-M adjuvant**
 - Extracted as saponins from bark of *Quillaja saponaria* Molina
 - Formulated with cholesterol and phospholipid, forming cage-like particles
 - Characterized by mechanisms of action that include:
 - Enhanced antigen delivery to draining lymph nodes
 - Enhancement of activated T cell, B cell, and APC populations
 - Induction of functional, and broadly cross-reactive antibodies
 - Induction of polyfunctional CD4+ T cells
 - Found to be antigen sparing in context of pandemic influenza antigens
In ferrets, NanoFlu (NIV) induced broadly cross-neutralizing immune responses to 2 decades of drifted A(H3N2) viruses, but Fluzone High Dose and Fluzone QIV did not.

Novel hemagglutinin nanoparticle influenza vaccine with Matrix-M™ adjuvant induces hemagglutination inhibition, neutralizing, and protective responses in ferrets against homologous and drifted A (H3N2) subtypes.

Phase 1: Higher Nanoflu (tNIV) wild-type HAI antibody responses (GMFRs) vs. Fluzone-High Dose (IIV3-HD) against 5 generations of antigenically drifted A(H3N2) strains

Improved Titers against Influenza Drift Variants with a Nanoparticle Vaccine

V Shinde, et al.
NEJM 378 (2018); 24
Phase 2: design and treatment assignments
Various formulations of NanoFlu (qNIV) versus Fluzone-HD or FluBlok

- Dose/formulation optimization trial
- Two licensed comparators
- 1375 adults ≥65 years of age
- Randomized to 1 of 7 groups
- Single dose of test vaccine on Day 0
- 2018-19 recommended NH strains

Treatment assignments in Phase 2 trial:

<table>
<thead>
<tr>
<th>Group</th>
<th>NanoFlu (qNIV) A antigen content</th>
<th>NanoFlu (qNIV) B antigen content</th>
<th>Matrix-M adjuvant content</th>
<th>Formulation</th>
<th>Subject N</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>Phase 1 dose</td>
<td>Phase 1 dose</td>
<td>Phase 1 dose</td>
<td>In-clinic bedside mix</td>
<td>155</td>
</tr>
<tr>
<td>B</td>
<td>Phase 1 dose</td>
<td>Phase 1 dose</td>
<td>Phase 1 dose</td>
<td>Pre-formulated (3 months)</td>
<td>310</td>
</tr>
<tr>
<td>C</td>
<td>Phase 1 dose</td>
<td>Phase 1 dose</td>
<td>1.5 X increased</td>
<td>Pre-formulated (3 months)</td>
<td>155</td>
</tr>
<tr>
<td>D</td>
<td>Phase 1 dose 1.5 X increased</td>
<td>Phase 1 dose</td>
<td>Phase 1 dose</td>
<td>Pre-formulated (3 months)</td>
<td>155</td>
</tr>
<tr>
<td>E</td>
<td>Phase 1 dose</td>
<td>Phase 1 dose</td>
<td>None</td>
<td>Pre-formulated (3 months)</td>
<td>310</td>
</tr>
<tr>
<td>F</td>
<td>Fluzone HD 2018-19 (trivalent)</td>
<td></td>
<td></td>
<td></td>
<td>155</td>
</tr>
<tr>
<td>G</td>
<td>Flublok 2018-19 (quadrivalent)</td>
<td></td>
<td></td>
<td></td>
<td>155</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Total 1375</td>
</tr>
</tbody>
</table>
Phase 2: objectives

- Demonstrate an “adjuvant effect” (primary endpoint)

- Describe antibody and T cell responses against homologous and drifted strains:
 - Wild-type VLP hemagglutination inhibition (wt-HAI) antibody responses at Day 0, 28, 56, and 182
 - Cell mediated immunity (CMI) at Day 0 and 7: polyfunctional CD4+ T-cell responses

- Describe the safety profile through Day 182

- Post-hoc: examine antibody responses against broadly neutralizing epitopes by competitive binding assays
Phase 2: summary of topline results

- Well-tolerated, with a reactogenicity and safety profile comparable to Fluzone HD and FluBlok
- Met primary endpoint, adjuvant effect shown for 5 of 6 strains tested
- Demonstrated that a stable adjuvant co-formulation was feasible with a quadrivalent vaccine
- Higher A/H3N2 *wild-type* VLP HAI antibody responses compared to Fluzone HD which spanned multiple currently-circulating subclades; and, similar *wild-type* VLP HAI antibody responses compared to FluBlok
- Substantially better competitive antibody responses against conserved, head- and stem- broadly neutralizing epitopes than either Fluzone HD or FluBlok (POSTER 11007)
- Substantially better polyfunctional CD4+ T cell responses than either Fluzone HD or FluBlok
Phase 2: NanoFlu *wt*-HAI responses comparable to FluBlok; but greater than Fluzone on three A/H3N2 viruses Day 0 and 28 GMTs against vaccine homologous and drifted A/H3N2 viruses
Phase 2: NanoFlu had greater wt-HAI responses against A/H3N2 than Fluzone HD Day 0 and 28 GMTs against homologous and drifted viruses
Influenza HA bnMAbs: epitope binding site of 2 Novavax broadly neutralizing monoclonal antibodies (bnMAbs) isolated from mice following vaccination with NanoFlu (A/HK/4801/2014); and 1 J&J stem bnMAb

- Novavax receptor binding domain (RBD) bnMAb: A2.91.3
- Novavax vestigial esterase (VE) bnMAb: A2.4.1
- J&J stem bnMAb: CR8020
Phase 2: NanoFlu had highest competitive antibody responses to multiple conserved epitopes: Receptor binding domain (RBD) mAb, vestigial esterase (VE) mAb, and stem mAb competitive antibody equivalents (CAE)
Phase 2: higher adjuvant dose (group C) induced best antigen-specific polyfunctional T cell responses

Day 0 and 7 boxplot of log10 counts of double cytokine+ CD4+ T cells (all strains pooled)

Cytokines stained: IL-2, IFN-γ, and TNF-α;
Double cytokine+: at least 2 of 3 cytokine+ on ICCS
Phase 2: higher adjuvant dose (group C) induced best antigen-specific polyfunctional T cell responses

Day 0 and 7 boxplot of log10 **counts** of double cytokine+ CD4+ T cells (all strains pooled)

Cytokines stained: IL-2, IFN-γ, and TNF-α;
Double cytokine+: at least 2 of 3 cytokine+ on ICCS
Phase 2: higher adjuvant dose (group C) has lowest level of non-response

Day 0 and 7 boxplot of log10 counts of double cytokine+ CD4+ T cells (all strains pooled)

Cytokines stained: IL-2, IFN-γ, and TNF-α;
Double cytokine+: at least 2 of 3 cytokine+ on ICCS
Phase 2: summary of topline results

• Well-tolerated, with a reactogenicity and safety profile comparable to Fluzone HD and FluBlok

• Met primary endpoint, adjuvant effect shown for 5 of 6 strains tested

• Demonstrated that a stable adjuvant co-formulation was feasible with a quadrivalent vaccine

• Higher A/H3N2 *wild-type* VLP HAI antibody responses compared to Fluzone HD which spanned multiple currently-circulating subclades; and, similar *wild-type* VLP HAI antibody responses compared to FluBlok

• Substantially better competitive antibody responses against conserved, head- and stem- broadly neutralizing epitopes than either Fluzone HD or FluBlok (POSTER 11007)

• Substantially better polyfunctional CD4+ T cell responses than either Fluzone HD or FluBlok
Next Steps

- Phase 3 non-inferiority immunogenicity trial to start Q3 2019
 - Demonstrate immunologic non-inferiority to licensed seasonal influenza vaccine on 4 homologous vaccine strains
 - Establish pivotal clinical trial dataset to support filing of BLA via accelerated approval pathway
End - Thank You
Backups
IN TERMS OF:

• Solicited AEs (reactogenicity) in the 7 days post-treatment
 • Severe solicited AEs: 1.3—2.3%
 • Reactogenicity of adjuvanted vaccine was not notably different than either licensed comparator

• Unsolicited AEs through Day 28
 • Severe unsolicited AEs: 0.7—2.3%

• Serious adverse events (SAEs) were infrequent through Day 28, and none were deemed treatment-related by the investigators
 • 0—2.3%
Phase 2: an adjuvant effect was demonstrated

Ratio of baseline adjusted Day 28 wt-HAI GMTs (adjuvanted NanoFlu (B) / unadjuvanted NanoFlu (E))

A/Sing H3N2: p = 0.002, Ratio >1 favors adjuvant
A/Switz H3N2: p < 0.001, Ratio >1 favors adjuvant
A/Wis H3N2: p = 0.005, Ratio >1 favors adjuvant
A/Mich H1N1: p = 0.002, Ratio >1 favors adjuvant
B/Col (VIC): p = 0.002, Ratio >1 favors adjuvant
B/Phu (YAM): p = 0.003, Ratio >1 favors adjuvant

Success criterion for demonstration of adjuvant effect: show statistically significant ratio of (adj. / non-adj.) > 1 for at least 2 of 6 strains.
Influenza HA: which epitopes make a good vaccine target? Neutralizing epitopes, their neutralizing potential, and potential vaccine targets

Epitopes
- Receptor binding domain (RBD)
- Vestigial esterase subdomain (VE)
- Stem

Neutralizing potential

Hemagglutinin

Viral attachment & membrane
Fusion

Membrane
Fusion
Confirm the Phase 1/2 safety and immunogenicity results

Establish a clinical data set that:

- Demonstrates an adjuvant effect
- Confirms feasibility of a co-formulated quadrivalent vaccine
- Selects the optimal does/formulation for a Phase 3 clinical trial
- Compares Nanoflu responses to licensed comparators
- Supports discussion of accelerated approval pathway with the FDA
Phase 2: demographics

- Median age: 70-72 years
- % Female: 49-65%
- % White: 86-91%
- % received prior year influenza vaccine: 85-89%
- % received any influenza vaccine in the past 3 years: 90-94%
Phase 2: safety profile was comparable between NanoFlu, Fluzone HD, and FluBlok

Safety outcomes through Day 28

IN TERMS OF:

• Solicited AEs (reactogenicity) in the 7 days post-treatment: 27—38%
 • Severe solicited AEs: 1.3—2.3%

• Unsolicited AEs through Day 28: 13.5—23.6%
 • Severe unsolicited AEs: 0.7—2.3%

• Medically attended adverse events (MAEs) through Day 28: 6—10.6%

• Serious adverse events (SAEs) were infrequent through Day 28: 0—2.3%
Phase 2: why use wild-type virus-like-particle (VLP) HAI assay instead of the classical HAI assay?

- Major problems with classical HAI assay in terms of:
 - Performance: limited ability to interrogate HAI responses to contemporary A/H3N2 viruses
 - Relevance: reliance on egg-adapted HAI reagents may yield biased/clinically irrelevant results
 - Unintended consequences: creates barrier to entry for next generation recombinant vaccine technologies

- We developed a wild-type VLP HAI assay to overcome these issues:
 - The assay employs:
 - VLPs expressing wild-type sequenced HAs as the agglutinating agent
 - Human type-O RBCs as the indicator particle
 - Rehabilitates assay performance and restores its clinical relevance
 - We validated assay performance using CDC historical reference ferret antisera

- FDA requires vaccine developers use the classical egg-based HAI assay to establish non-inferiority versus licensed comparators; we will do so in the upcoming phase 3 non-inferiority immunogenicity trial

- For purposes of understanding the performance of NanoFlu versus licensed comparators, we will show you wild-type VLP HAI data hereafter, which we believe is the more unbiased and clinically relevant
Phase 1/2: egg-adapted reagents may give a misleading/clinically irrelevant result

MN responses (GMFRs) against egg-adapted vs. wild-type A/Singapore H3N2

NanoFlu induced improved neutralization responses against wild-type vs. egg-adapted A/Singapore H3N2 viruses underscoring the problem of egg-adaptive mutations

Neutralization antibody responses against wild-type circulating viruses are the most clinically relevant